Modeling pN_2 through Geological Time: Implications for Planetary Climates and Atmospheric Biosignatures

E.E. Stüeken,1,2,3,4 M.A. Kipp,1,4 M.C. Koehler,1,4 E.W. Schwieterman,2,4,5 B. Johnson,6 and R. Buick1,4

Abstract

Nitrogen is a major nutrient for all life on Earth and could plausibly play a similar role in extraterrestrial biospheres. The major reservoir of nitrogen at Earth’s surface is atmospheric N_2, but recent studies have proposed that the size of this reservoir may have fluctuated significantly over the course of Earth’s history with particularly low levels in the Neoarchean—presumably as a result of biological activity. We used a biogeochemical box model to test which conditions are necessary to cause large swings in atmospheric N_2 pressure. Parameters for our model are constrained by observations of modern Earth and reconstructions of biomass burial and oxidative weathering in deep time. A 1-D climate model was used to model potential effects on atmospheric climate. In a second set of tests, we perturbed our box model to investigate which parameters have the greatest impact on the evolution of atmospheric pN_2 and consider possible implications for nitrogen cycling on other planets. Our results suggest that (a) a high rate of biomass burial would have been needed in the Archean to draw down atmospheric pN_2 to less than half modern levels, (b) the resulting effect on temperature could probably have been compensated by increasing solar luminosity and a mild increase in pCO_2, and (c) atmospheric oxygenation could have initiated a stepwise pN_2 rebound through oxidative weathering. In general, life appears to be necessary for significant atmospheric pN_2 swings on Earth-like planets. Our results further support the idea that an exoplanetary atmosphere rich in both N_2 and O_2 is a signature of an oxygen-producing biosphere. Key Words: Biosignatures—Early Earth—Planetary atmospheres.

1. Introduction

Life as we know it is implausible without nitrogen. It is an essential major nutrient for all living things because it is a key component of the nitrogenous bases in the nucleic acids that store, transcribe, and translate genetic information, a necessary ingredient of the amino acids constituting the proteins responsible for most cellular catalysis and at the core of the ATP molecule that is the principal energy transfer agent for biological metabolism. As nitrogen’s cosmic abundance is only slightly less than that of carbon and oxygen and because it condenses at moderate distances in circumstellar disks, it should have been available to other potential exoplanetary biospheres. However, N_2 gas, the most likely nitrogen species near planetary surfaces in the habitable zone, is nearly inert at standard conditions because of the very strong triple bond in $N≡N$. Lightning can break this bond and combine nitrogen with other atmospheric species, but on Earth this process has been relatively inefficient (Borucki and Chameides, 1984; Navarro-González et al., 2001). Much more significant for removing N_2 from Earth’s atmosphere is microbial N_2 fixation to ammonium, a reaction catalyzed by the enzyme nitrogenase. Today, most of this fixed nitrogen is returned to the atmosphere via the biogeochemical nitrogen cycle, a series of microbially modulated redox reactions that ultimately transform organic nitrogen back to gaseous N_2. Thus, life’s demand for nitrogen regulates its atmospheric abundance.

1Department of Earth and Space Sciences and Astrobiology Program, University of Washington, Seattle, Washington, USA.
2Department of Earth Sciences, University of California, Riverside, California, USA.
3Department of Earth and Environmental Sciences, University of St Andrews, St Andrews, Scotland, UK.
4NASA Astrobiology Institute’s Virtual Planetary Laboratory, Seattle, Washington, USA.
5Department of Astronomy and Astrobiology Program, University of Washington, Seattle, Washington, USA.
6School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada.
Though N₂ is not a greenhouse gas itself, its atmospheric partial pressure affects planetary environmental conditions. Higher N₂ pressure can enhance greenhouse warming by pressure broadening the absorption bands of such gases as water vapor, CO₂, CH₄, and N₂O (Goldblatt et al., 2009). Hence, the partial pressure of N₂ indirectly influences surface temperature and thus habitability. Moreover, a low total atmospheric pressure of all gases combined weakens the cold-trap for water vapor at the tropopause (Wordsworth and Pirreihumbert, 2014). Where N₂ is a major atmospheric constituent, a drop in pN₂ can make the tropopause cold-trap leaky (Zahnle and Buick, 2016), allowing water vapor into the upper layers of the atmosphere where it can either remain as vapor, perhaps increasing overall greenhouse warming (Rind, 1998; Solomon et al., 2010; Dessler et al., 2013) (but for a contrary view see Huang et al., 2016), or freeze as high-altitude ice clouds in polar regions, warming the high latitudes and making planetary climate more equable (Sloan and Pollard, 1998). Thus, planetary habitability is dependent, at least in part, on atmospheric nitrogen levels.

Though we know next to nothing about the evolution of the biogeochemical nitrogen cycles on other planets, we now have a better-resolved picture of the behavior of nitrogen through Earth’s history (Ader et al., 2016; Stüeken et al., 2016). It seems that (1) microbial nitrogen fixation evolved very early in Earth’s history such that a nitrogen crisis for the primordial biosphere was averted (Stüeken et al., 2015; Weiss et al., 2016), (2) the partial pressure of atmospheric N₂ has fluctuated through time to a greater degree than previously anticipated (Som et al., 2016), (3) an aerobic nitrogen cycle arose before the Great Oxidation Event (GOE) at ~2.35 Ga (Garvin et al., 2009; Godfrey and Falkowski, 2009), (4) during the mid-Proterozoic aerobic and anaerobic nitrogen cycling was spatially separated under low-oxygen conditions (Stüeken, 2013; Koehler et al., 2016), and (5) a modern nitrogen cycle with widespread aerobic activity did not arise until the late Neoproterozoic (Ader et al., 2014). The main constraints on these developments were evidently biological evolution and redox changes in Earth’s surface environments, principally the oxygenation state of the atmosphere and ocean (Stüeken et al., 2016). Other Earth-like planets may have evolved along somewhat similar pathways with respect to nitrogen cycling, provided that they also originated Earth-like life. If so, then atmospheric swings in pN₂ may be a common feature of terrestrial inhabited planets.

In the present study, we investigated the diversity of terrestrial planetary nitrogen cycles by modeling the evolution of Earth’s atmospheric N₂ reservoir. We then perturbed the model to examine several hypothetical extreme scenarios that could arise on Earth-like exoplanets, defined here as planets with a silicate rock mantle and iron core (empirically <1.6 Earth radii in size, Rogers, 2015), an orbit within the conservative limits of the habitable zone (Kopp et al., 2013), and a similar volatile content to Earth. This conservative definition prescribes a high-molecular-weight atmosphere dominated by N₂, CO₂, and H₂O rather than H₂ (cf. Pirreihumbert and Gaidos, 2011; Seager, 2013). After exploring a range of variables, we concluded that some combinations of N₂ abundance with other gases could act as extraterrestrial biosignatures, others could be “false positives,” and yet others may indicate that a planet is uninhabited. Overall, our results suggest that an anaerobic biosphere can greatly facilitate the removal of large amounts of N₂ from a planetary atmosphere.

2. Model Setup
2.1. Biogeochemical nitrogen box model

We used the isee Stella software to construct a box model of the global biogeochemical nitrogen cycle (Fig. 1), tracking total nitrogen. Boxes included the atmosphere, pelagic marine sediments deposited on oceanic crust, continental marine sediments deposited on continental shelves and in epeiric seas, continental crust, and the mantle. Continental marine sediments were defined to become part of the continental crust after 100 million years and from there onward were subjected to metamorphism, which returns nitrogen to the atmosphere. Similarly, we let pelagic marine sediments accumulate for 100 million years before they were subjected to subduction, metamorphism, and volcanism. These timescales were based on the observation that C/N ratios in sedimentary rocks older than about 100 million years become more variable with higher average values (Algeo et al., 2014). The two sinks of nitrogen from the atmosphere were burial in pelagic sediments and burial in continental sediments with proportions of ~1:25 (Berner, 1982). The sources of atmospheric nitrogen were volcanic and meteoric degassing of subducted pelagic sediments, metamorphism of continental crust, oxidative weathering of continents, and mantle outgassing. Denitrification was not explicitly included as a source, because we did not track the marine nitrogen reservoir.

The model was run in 1-million-year time-steps from 4.5 Ga to the present. Differential equations listed in the Supplementary Material were solved with the Euler method (Supplementary Material is available online at www.liebertonline.com/ast). The chosen step size is much lower than the residence time of nitrogen in our modeled reservoirs (>100 million years), which eradicates computational artifacts that can result in mass imbalances. The initial abundances of nitrogen in the mantle, continental crust, and sediments were set such that the concentrations were the same, assuming that any disequilibrium in concentrations observed today is due to biogeochemical overprinting. The rock masses and modern nitrogen inventories were taken from the work of Johnson and Goldblatt (2015). The initial abundance of atmospheric N₂ is unknown. We tuned the model such that the final atmospheric N₂ abundance after 4.5 billion years equaled the modern amount of 2.87·10²⁰ mol, defined as one times present atmospheric nitrogen (PAN) (Johnson and Goldblatt, 2015).

A more detailed description of how rate constants were derived is given in the Supplementary Material. Following the work of Berner (2006), nitrogen burial was parameterized through biomass burial (i.e., organic carbon). Although this approach neglects the origin and radiation of biological nitrogen metabolisms over Earth’s history (Stüeken et al., 2016), it is preferred because (a) it avoids major uncertainties about metabolic rates in deep time and (b) it is sufficient for tracking the total nitrogen sink from the atmosphere. As further discussed below (Section 4.1), additional nitrogen burial through adsorption on clay minerals is negligible compared to the organic nitrogen flux into

Though we know next to nothing about the evolution of the biogeochemical nitrogen cycles on other planets, we now have a better-resolved picture of the behavior of nitrogen through Earth’s history (Ader et al., 2016; Stüeken et al., 2016). It seems that (1) microbial nitrogen fixation evolved very early in Earth’s history such that a nitrogen crisis for the primordial biosphere was averted (Stüeken et al., 2015; Weiss et al., 2016), (2) the partial pressure of atmospheric N₂ has fluctuated through time to a greater degree than previously anticipated (Som et al., 2016), (3) an aerobic nitrogen cycle arose before the Great Oxidation Event (GOE) at ~2.35 Ga (Garvin et al., 2009; Godfrey and Falkowski, 2009), (4) during the mid-Proterozoic aerobic and anaerobic nitrogen cycling was spatially separated under low-oxygen conditions (Stüeken, 2013; Koehler et al., 2016), and (5) a modern nitrogen cycle with widespread aerobic activity did not arise until the late Neoproterozoic (Ader et al., 2014). The main constraints on these developments were evidently biological evolution and redox changes in Earth’s surface environments, principally the oxygenation state of the atmosphere and ocean (Stüeken et al., 2016). Other Earth-like planets may have evolved along somewhat similar pathways with respect to nitrogen cycling, provided that they also originated Earth-like life. If so, then atmospheric swings in pN₂ may be a common feature of terrestrial inhabited planets.

In the present study, we investigated the diversity of terrestrial planetary nitrogen cycles by modeling the evolution of Earth’s atmospheric N₂ reservoir. We then perturbed the model to examine several hypothetical extreme scenarios that could arise on Earth-like exoplanets, defined here as planets with a silicate rock mantle and iron core (empirically <1.6 Earth radii in size, Rogers, 2015), an orbit within the conservative limits of the habitable zone (Kopp et al., 2013), and a similar volatile content to Earth. This conservative definition prescribes a high-molecular-weight atmosphere dominated by N₂, CO₂, and H₂O rather than H₂ (cf. Pirreihumbert and Gaidos, 2011; Seager, 2013). After exploring a range of variables, we concluded that some combinations of N₂ abundance with other gases could act as extraterrestrial biosignatures, others could be “false positives,” and yet others may indicate that a planet is uninhabited. Overall, our results suggest that an anaerobic biosphere can greatly facilitate the removal of large amounts of N₂ from a planetary atmosphere.

2. Model Setup
2.1. Biogeochemical nitrogen box model

We used the isee Stella software to construct a box model of the global biogeochemical nitrogen cycle (Fig. 1), tracking total nitrogen. Boxes included the atmosphere, pelagic marine sediments deposited on oceanic crust, continental marine sediments deposited on continental shelves and in epeiric seas, continental crust, and the mantle. Continental marine sediments were defined to become part of the continental crust after 100 million years and from there onward were subjected to metamorphism, which returns nitrogen to the atmosphere. Similarly, we let pelagic marine sediments accumulate for 100 million years before they were subjected to subduction, metamorphism, and volcanism. These timescales were based on the observation that C/N ratios in sedimentary rocks older than about 100 million years become more variable with higher average values (Algeo et al., 2014). The two sinks of nitrogen from the atmosphere were burial in pelagic sediments and burial in continental sediments with proportions of ~1:25 (Berner, 1982). The sources of atmospheric nitrogen were volcanic and meteoric degassing of subducted pelagic sediments, metamorphism of continental crust, oxidative weathering of continents, and mantle outgassing. Denitrification was not explicitly included as a source, because we did not track the marine nitrogen reservoir.

The model was run in 1-million-year time-steps from 4.5 Ga to the present. Differential equations listed in the Supplementary Material were solved with the Euler method (Supplementary Material is available online at www.liebertonline.com/ast). The chosen step size is much lower than the residence time of nitrogen in our modeled reservoirs (>100 million years), which eradicates computational artifacts that can result in mass imbalances. The initial abundances of nitrogen in the mantle, continental crust, and sediments were set such that the concentrations were the same, assuming that any disequilibrium in concentrations observed today is due to biogeochemical overprinting. The rock masses and modern nitrogen inventories were taken from the work of Johnson and Goldblatt (2015). The initial abundance of atmospheric N₂ is unknown. We tuned the model such that the final atmospheric N₂ abundance after 4.5 billion years equaled the modern amount of 2.87·10²⁰ mol, defined as one times present atmospheric nitrogen (PAN) (Johnson and Goldblatt, 2015).

A more detailed description of how rate constants were derived is given in the Supplementary Material. Following the work of Berner (2006), nitrogen burial was parameterized through biomass burial (i.e., organic carbon). Although this approach neglects the origin and radiation of biological nitrogen metabolisms over Earth’s history (Stüeken et al., 2016), it is preferred because (a) it avoids major uncertainties about metabolic rates in deep time and (b) it is sufficient for tracking the total nitrogen sink from the atmosphere. As further discussed below (Section 4.1), additional nitrogen burial through adsorption on clay minerals is negligible compared to the organic nitrogen flux into
sediments. Using this approach, we calculated modern nitrogen burial from the modern volcanic CO$_2$ outgassing flux of 6·1018 mol/Myr (Marty and Tolstikhin, 1998), assuming that 22% (f_{org} = 0.22) of volcanogenic CO$_2$ is buried as organic carbon in the absence of land plants (pre-Devonian) (Krissansen-Totton et al., 2015) and that the C/N ratio of post-diagenetic marine biomass is approximately 10 (Godfrey and Glass, 2011; Algeo et al., 2014). This gave a nitrogen burial flux of 1.32·1017 mol/Myr, equal to *1.5% of modern biological N$_2$ fixation (8.64·1018 mol/Myr) (Galloway et al., 2004). We then modulated this flux in deep time in three different ways. First, we took into account secular trends in f_{org} as inferred from the carbon isotope record ("Forg model") (Krissansen-Totton et al., 2015). Uncertainties in this record, resulting from potentially underrepresented carbonate reservoirs (Bjerrum and Canfield, 2004; Schrag et al., 2013) and the variance in δ^{13}C values at any given time point, are discussed below. Second, we assumed a gradual decline in CO$_2$ outgassing from the Hadean to the modern, following the parameterization of Canfield (2004, Eq. 2) ("Forg + Heatflow model"). By mass balance, higher CO$_2$ outgassing in the earlier Precambrian implies higher burial fluxes of biomass and with it nitrogen. Uncertainties and caveats of this approach are discussed below.

Third, we tested for the effects of additional 2-fold increases in CO$_2$ input, and hence, nitrogen burial, during superplume events (Abbott and Isley, 2002) ("Forg + Heatflow + Superplume model"). This model did not include potential N$_2$ addition through enhanced volcanism, which we will discuss separately. In all these models, oxidative weathering was implemented as a function of p_O_2 through time (Lyons et al., 2014) with a reaction order of 0.5, that is, proportional to (p_O_2)$^{0.5}$ (Chang and Berner, 1999; Bolton et al., 2006).

In a separate set of models, we tested hypothetical scenarios for Earth-like planets without any biosphere and an anoxic atmosphere, or with a completely anaerobic biosphere that does not experience oxygenation events. Our definition of Earth-like planets includes an orbit within the habitable zone where liquid water can be stable at the surface, as well as a rocky composition and a volatile inventory similar to those of Earth (Section 1). This definition is admittedly limited, but it allows us to identify with greater confidence a subset of parameters that can play a critical role in the history of the nitrogen cycle. We assumed abiotic nitrogen burial was driven by NH$_4^+$ adsorption on clay minerals after abiotic N$_2$ reduction in the atmosphere. Rates were taken from the work of Stüeken (2016) for two extreme end-members corresponding to high and low estimates of

FIG. 1. Schematic of the nitrogen model for Earth. All fluxes except for burial of nitrogen from the atmosphere into sediments are dependent on the reservoir size. Fluxes with dashed arrows are implemented as time-variable, except in our "base model" (Fig. 2a).
2.2. Modeling effects on greenhouse gases and global climate

We selected the most extreme end-members of our Earth model to determine potential effects on Earth’s climate. As shown below, the timescales over which variations in \(p_{N_2} \) can occur exceed those of the carbonate-silicate feedback cycle (Walker et al., 1981). Hence, changing \(p_{N_2} \) alone is unlikely to cause rapid climate changes, because \(p_{CO_2} \) can rapidly re-adjust to keep surface temperatures more or less steady. We therefore decided to calculate the required changes in \(p_{CO_2} \) that would counterbalance the effects of varying \(p_{N_2} \). We used an iterative approach to determine the \(p_{CO_2} \) necessary to maintain a 278 K globally averaged surface temperature (\(T_{GAT} \)) equivalent to the estimated globally averaged temperature during the last glacial maximum. This limit was chosen because geological evidence suggests that the Archean was cool (Hren et al., 2009; Blake et al., 2010) but not permanently glaciated (Young, 1991; de Wit and Furnes, 2016). As input values, we used the changes in nitrogen abundance shown in Section 3 (Fig. 2) and changes in solar luminosity from 3.5 to 2.4 Ga. To do this, we used a 1-D radiative convective model that was recently used to calculate habitable zone boundaries (Kasting et al., 1984, 1993; Kopparapu et al., 2013) and characterize the surface temperature of a hypothetical Archean Earth with a global hydrocarbon haze (Arney et al., 2016). We chose a surface albedo of \(A_{surf}=0.32 \), which is a tuning parameter used to reproduce the temperature of modern Earth (Kopparapu et al., 2013; Arney et al., 2016). Our atmospheric composition consisted of only \(N_2, CO_2, H_2O, \) and \(CH_4, \) where the \(p_{N_2} \) was taken from our model output (Table 1) and \(CH_4 \) was fixed at \(p_{CH_4}=0.001 \) \((f_{CH_4}, f_{CO_2}, f_{N_2}, \) and the total surface pressure \(P_0 \) were adjusted self-consistently for changes in \(p_{CO_2} \). The \(H_2O \) profiles were calculated using a relative humidity profile assuming a surface relative humidity of 80\% (Manabe and Wetherald, 1967). The solar luminosity at 3.5 and 2.4 Ga (0.769 and 0.831) was found through interpolation of Table 2 in the work of Bahrall et al. (2001). We focused on the \(p_{CO_2} \) required to maintain a \(T_{GAT} \geq 278 \) K, noting that significantly lower temperatures \((T_{GAT}<273 \) K) may allow some open oceans, but a 3-D model would be needed to capture their additional complexities (see Supplementary Material S5 for limitations of our approach). Table 1 shows a summary of our results. We also indicate the surface temperature if \(p_{CO_2} \) was not adjusted to maintain \(T_{GAT}=278 \) K, but was maintained at the \(p_{CO_2} \) value at 3.5 Ga, and if both the \(p_{CO_2} \) and solar luminosity were maintained at the 3.5 Ga values. Table 2 shows similar results as Table 1 but for a more permissive initial and final \(T_{GAT} \) of 273 K. This illustrates the sensitivity of the required \(p_{CO_2} \) adjustment to compensate for \(p_{N_2} \) drawdown as a function of the choice of reference temperature.

3. Results

3.1. Nitrogen burial constrained by carbon burial

We tested four different models for the evolution of nitrogen burial through geological time (Fig. 2). In our base model (Fig. 2a), nitrogen burial was held constant at its modern flux. Each subsequent iteration incorporates an additional parameter to the N burial record and, thus, shows additional atmospheric N drawdown. Sensitivity tests are presented in Section S3. The majority of the uncertainty range illustrated in Fig. 2 derives from uncertainties about rates of nitrogen loss during continental metamorphism.

3.1.1. \(F_{org} \) model. In the first test, the base model was modified by scaling nitrogen burial as a function of \(f_{org} \) (organic carbon burial fraction). This did not significantly change the evolutionary trend of the atmospheric nitrogen reservoir predicted by the base model, as \(f_{org} \) has been relatively invariant through geological time (Fig. 2b). During the largest burial event indicated by the carbon isotope record, the Lomagundi Event at \(ca. 2.3–2.1 \) Ga, \(f_{org} \) temporally exceeds 0.3 (Precambrian baseline \(\sim 0.15–0.2 \)). However, even this increase in organic burial alone appears to be insufficient to significantly deplete the atmospheric \(N_2 \) reservoir by more than \(\sim 0.02 \) PAN. This model shows a slow depletion of the atmospheric nitrogen reservoir during the Archean (from 1.0 to 0.81 PAN) and relatively constant atmospheric nitrogen during the Protrozoic (range 0.78 to 0.82 PAN). Modern atmospheric nitrogen levels are not attained until late in the Phanerozoic.

3.1.2. \(F_{org}+\text{Heatflow} \) model. When we scale nitrogen burial proportionally to the amount of \(CO_2 \) outgassing (Canfield, 2004), our model shows a significant drawdown of atmospheric nitrogen during the Archean, reaching a minimum of 0.44 PAN (=0.35 bar \(N_2 \)) in the earliest Paleoproterozoic, immediately prior to the GOE (Fig. 2c). Fixed nitrogen is principally buried and stored in continental sediments and continental crust, which reach a maximum of 1.7× the modern continental reservoir size at this time (Section S2). During the GOE, the atmospheric nitrogen reservoir rebounds due to enhanced oxidative weathering of the continents, but this rebound stops after the GOE, and atmospheric nitrogen remains low at 0.59–0.65 PAN (\(\sim 0.47–0.51 \) bar \(N_2 \)) until the Neoproterozoic Oxidation Event (NOE). Atmospheric \(N_2 \) rapidly rises during the Neoproterozoic and Paleozoic in response to a further enhancement of oxidative weathering with the second rise of \(O_2 \). The later Phanerozoic shows a slow gradual increase in
FIG. 2. Reconstructing nitrogen burial over Earth’s history. Arrows mark \(p_{N_2} \) value inferred for proxies (Marty et al., 2013; Som et al., 2016). (a) Base model. N burial is held constant, calculated as the product of volcanic CO\(_2\) outgassing, the pre-Devonian organic burial fraction \(f_{\text{org}} \) of 0.22, and the inverse of the Redfield C/N ratio of 10. (b) \(f_{\text{org}} \) model. N burial is modulated by secular changes in \(f_{\text{org}} \) as inferred from the carbon isotope record (Krissansen-Totton et al., 2015). (c) \(f_{\text{org}} + \) Heatflow model. CO\(_2\) outgassing is assumed to have declined gradually from the Hadean to the modern with decreasing heatflow from Earth’s interior, as described by Canfield (2004). Carbon burial and with it nitrogen burial is changed in proportion. Mantle outgassing is modulated in the same way. (d) \(f_{\text{org}} + \) Heatflow + Superplumes model. Additional pulses of CO\(_2\) outgassing are assumed during intervals of superplumes as recorded in the rock record (Abbott and Isley, 2002). Solid black line = using best estimates for all parameters; dashed lines = most extreme uncertainty interval if all parameters are off in the same direction (excluding uncertainties in Redfield ratio and modern CO\(_2\) outgassing, Supplementary Material S3); gray shaded area = more plausible uncertainty interval with narrower range of values for the metamorphic rate constant (most sensitive variable, see Supplementary Material S3).

Table 1. Climate Response to Changes in Atmospheric N\(_2\)

<table>
<thead>
<tr>
<th>Line</th>
<th>Age (Ga)</th>
<th>Rel. solar luminosity</th>
<th>(N_2) (PAN)</th>
<th>(p_{N_2}) (bar)</th>
<th>(p_{CO_2}) (bar)</th>
<th>(p_{CH_4}) (bar)</th>
<th>(P_0) (bar)</th>
<th>(T_{GAT}) (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{\text{org}} +) Heatflow model:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>0.769</td>
<td>0.61</td>
<td>0.476</td>
<td>0.046</td>
<td>0.001</td>
<td>0.523</td>
<td>278.0</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
<td>0.769</td>
<td>0.42</td>
<td>0.328</td>
<td>0.046</td>
<td>0.001</td>
<td>0.375</td>
<td>274.7</td>
</tr>
<tr>
<td>3</td>
<td>2.4</td>
<td>0.831</td>
<td>0.42</td>
<td>0.328</td>
<td>0.046</td>
<td>0.001</td>
<td>0.375</td>
<td>282.4</td>
</tr>
<tr>
<td>4</td>
<td>2.4</td>
<td>0.831</td>
<td>0.42</td>
<td>0.328</td>
<td>0.018</td>
<td>0.001</td>
<td>0.346</td>
<td>278.0</td>
</tr>
<tr>
<td>(f_{\text{org}} +) Heatflow + Superplumes model, lower limit:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>0.769</td>
<td>0.54</td>
<td>0.421</td>
<td>0.056</td>
<td>0.001</td>
<td>0.480</td>
<td>278.0</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
<td>0.769</td>
<td>0.08</td>
<td>0.062</td>
<td>0.056</td>
<td>0.001</td>
<td>0.119</td>
<td>264.8</td>
</tr>
<tr>
<td>3</td>
<td>2.4</td>
<td>0.831</td>
<td>0.08</td>
<td>0.062</td>
<td>0.056</td>
<td>0.001</td>
<td>0.119</td>
<td>270.6</td>
</tr>
<tr>
<td>4</td>
<td>2.4</td>
<td>0.831</td>
<td>0.08</td>
<td>0.062</td>
<td>0.160</td>
<td>0.001</td>
<td>0.223</td>
<td>278.0</td>
</tr>
</tbody>
</table>

Input data are the age, the corresponding relative solar luminosity taken from Bahcall et al. (2001), atmospheric \(N_2 \) (PAN) calculated from our box model, and an assumed constant background level of 1000 ppmv CH\(_4\). Partial \(N_2 \) pressure (\(p_{N_2} \)) was calculated as the product of total \(N_2 \) in units of PAN and the modern \(p_{N_2} \) of 0.78 bar. Output parameters are \(T_{GAT} \) (global average surface temperature), \(p_{CO_2} \), and \(P_0 \) (total average surface pressure, i.e., sum of all gases). Line 1 = starting conditions at 3.5 Ga; line 2 = changing PAN with constant luminosity and constant \(p_{CO_2} \) (taken from line 1); line 3 = changing PAN and luminosity with constant \(p_{CO_2} \); line 4 = changing PAN, luminosity, and \(p_{CO_2} \). Parameters are calculated such that the \(T_{GAT} \) at (1) and (4) converges to 278 K.

3.2. Atmospheric nitrogen evolution on abiotic and anoxic worlds

3.2.1. Abiotic anoxic planets. In the hypothetical scenario of a completely abiotic Earth-like planet in the habitable zone of another star with plausible abiotic nitrogen burial rates (Stüeken, 2016), the atmospheric nitrogen reservoir increased slightly from 1.0 PAN to 1.14–1.22 PAN after 4.5 billion years, with no periods of atmospheric N₂ drawdown (Fig. 3a). Catastrophic events such as plumes would have little effect on such a planet because, as further discussed below (Section 3.3.2), most of the nitrogen liberated by such events on Earth is likely sourced from the crust that has been enriched in nitrogen due to biological burial. On an abiotic planet, the crust would be relatively depleted in nitrogen. The sensitivity of these trends to changes in surface and deep Earth nitrogen fluxes is given in the Supplementary Material (Section S4). Overall, we find no plausible mechanism that could cause large swings in \(p \text{N}_2 \), apart from the possibility of atmospheric erosion (e.g., Mars, Section 4.3) or freeze-out of N₂ on planets far outside the habitable zone (e.g., Pluto). Although this modeled scenario is hypothetical, it emphasizes the potential importance of life for the evolution of the global nitrogen cycle.

3.2.2. Biotic anoxic planets. Our results for a hypothetical Earth-like planet with an anaerobic biosphere suggest that, under the right conditions, biological nitrogen drawdown can have a major effect on the evolution of atmospheric \(p \text{N}_2 \) through time. Nitrogen burial rates equal to 0.1 and 0.04 times the modern \(\text{N}_2 \) fixation rate sequester atmospheric nitrogen to 0 PAN by 4.1 and 2.9 Ga, respectively (Fig. 3b). The minimum flux required to reach 0 PAN within 4.5 billion years is roughly 0.03 times modern biological \(\text{N}_2 \) fixation, or 2 times the modern nitrogen burial flux. As in the case of our “\(F_{\text{org}} + \text{Heatflow} \)” model above, most of this nitrogen is stored in continental sediments and crust. A flux of 0.01 times modern biological \(\text{N}_2 \) fixation does not completely draw down atmospheric \(\text{N}_2 \) but leads to a steady state of \(\sim 0.84 \) PAN (Fig. 3b). A more detailed sensitivity analysis of these simulations is presented in Section S4. When other parameters are set to their most conservative values (i.e., minimizing \(\text{N}_2 \) sequestration), a fixation flux of \(\sim 0.13 \) times modern would be needed to draw down atmospheric \(\text{N}_2 \) to 0 PAN. Again, this scenario is hypothetical, but in comparison to our Earth model, it emphasizes the important influence of atmospheric oxygen on the nitrogen cycle.

It is conceivable that a biosphere would go extinct when the atmospheric \(\text{N}_2 \) reservoir becomes depleted and triggers a global glaciation, at least if biological \(\text{N}_2 \) drawdown does not completely draw down atmospheric \(\text{N}_2 \) but leads to a steady state of \(\sim 0.84 \) PAN (Fig. 3b). A more detailed sensitivity analysis of these simulations is presented in Section S4. When other parameters are set to their most conservative values (i.e., minimizing \(\text{N}_2 \) sequestration), a fixation flux of \(\sim 0.13 \) times modern would be needed to draw down atmospheric \(\text{N}_2 \) to 0 PAN. Again, this scenario is hypothetical, but in comparison to our Earth model, it emphasizes the important influence of atmospheric oxygen on the nitrogen cycle.

<table>
<thead>
<tr>
<th>Line</th>
<th>Age (Ga)</th>
<th>Rel. solar luminosity</th>
<th>(N_2) (PAN)</th>
<th>(p\text{N}_2) (bar)</th>
<th>(p\text{CO}_2) (bar)</th>
<th>(p\text{CH}_4) (bar)</th>
<th>(p_o) (bar)</th>
<th>(T_{\text{GAT}}) (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{\text{org}} + \text{Heatflow model}):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>0.769</td>
<td>0.61</td>
<td>0.476</td>
<td>0.020</td>
<td>0.001</td>
<td>0.497</td>
<td>273.2</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
<td>0.769</td>
<td>0.42</td>
<td>0.328</td>
<td>0.020</td>
<td>0.001</td>
<td>0.348</td>
<td>270.6</td>
</tr>
<tr>
<td>3</td>
<td>2.4</td>
<td>0.831</td>
<td>0.42</td>
<td>0.328</td>
<td>0.020</td>
<td>0.001</td>
<td>0.348</td>
<td>278.4</td>
</tr>
<tr>
<td>4</td>
<td>2.4</td>
<td>0.831</td>
<td>0.42</td>
<td>0.328</td>
<td>0.005</td>
<td>0.001</td>
<td>0.333</td>
<td>273.2</td>
</tr>
<tr>
<td>(F_{\text{org}} + \text{Heatflow + Superplumes model, lower limit}):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>0.769</td>
<td>0.54</td>
<td>0.421</td>
<td>0.024</td>
<td>0.001</td>
<td>0.446</td>
<td>273.2</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
<td>0.769</td>
<td>0.08</td>
<td>0.062</td>
<td>0.024</td>
<td>0.001</td>
<td>0.087</td>
<td>261.1</td>
</tr>
<tr>
<td>3</td>
<td>2.4</td>
<td>0.831</td>
<td>0.08</td>
<td>0.062</td>
<td>0.024</td>
<td>0.001</td>
<td>0.087</td>
<td>266.2</td>
</tr>
<tr>
<td>4</td>
<td>2.4</td>
<td>0.831</td>
<td>0.08</td>
<td>0.062</td>
<td>0.118</td>
<td>0.001</td>
<td>0.181</td>
<td>273.2</td>
</tr>
</tbody>
</table>

Same as Table 1, but for a fiducial \(T_{\text{GAT}} \) of 273.2 K at lines (1) and (4). Differences from Table 1 are in **bold**.
not slow down dramatically as \(pN_2 \) approaches 0 PAN (e.g., Klingler et al., 1989). Of course, in reality, biogeochemical feedbacks that were not considered in our model may maintain a low, but nonzero, \(N_2 \) reservoir in the atmosphere, and the biosphere may not necessarily go extinct as evidenced by extreme glacial events on Earth. We nevertheless explored this case in our model, because it provides an estimate of how fast \(pN_2 \) can recover on an anoxic planet in the absence of an Earth-like atmospheric oxygenation event (cf. Fig. 2c, 2d). Our results show that in this case the buried nitrogen would return much more slowly through continental metamorphism and erosion than it does with oxidative weathering. We determined the recovery time of atmospheric \(pN_2 \) after it is completely sequestered by switching off biological nitrogen fixation once \(pN_2 \) reached 0 PAN. With nitrogen burial fluxes of 10% and 4% modern \(N_2 \) fixation, it takes 2.76 and 2.62 billion years, respectively, for atmospheric nitrogen values to recover to 1.0 PAN, assuming that the biosphere does not recover during that time (Fig. 3c). This is much slower than the increases in \(pN_2 \) that occurred in our models over a few hundred million years after the GOE and NOE on Earth, which highlights the linkage between \(pO_2 \) and \(pN_2 \) that is further discussed below (Section 4.3).

To assess the effects of continental crust (the major nitrogen repository in our models), we ran a separate model where all burial was directed to pelagic sediments; that is, continents were bypassed to mimic a planet without an equivalent of continental crust. Burial fluxes were arbitrarily set to 4% times the modern fixation rate. Under these conditions, \(pN_2 \) drawdown to 0 PAN is much slower (Fig. 3d), because nitrogen in pelagic sediments has a much shorter residence time than in continental sediments and crust and is returned relatively rapidly through subduction-zone metamorphism and volcanism. However, once atmospheric \(N_2 \) has been sequestered in the mantle, it does not recover, even over a billion-year timescale. Although this model describes a purely hypothetical scenario of plate tectonics in the absence of continents, it demonstrates that a relatively shallow nitrogen repository akin to continental crust with an intermediate residence time between that of pelagic sediments and the mantle greatly facilitates large atmospheric \(pN_2 \) swings over hundreds of millions of years, as suggested for Precambrian Earth (Som et al., 2016).
3.3. Catastrophic events

Planets are periodically subject to catastrophic events throughout their history. We performed order-of-magnitude calculations to test whether such events could affect atmospheric N$_2$ reservoirs and, hence, our overall conclusions. Possible events considered here include asteroid or comet impacts, superplume volcanism as an N$_2$ source, and large-scale planetary resurfacing.

3.3.1. Impacts. There are three ways impacts could affect the amount of nitrogen in a planetary atmosphere: direct nitrogen addition from the bolide, atmospheric erosion with loss of N$_2$ to space, and release of buried nitrogen through crustal heating. A variety of asteroids have substantial nitrogen contents. The most volatile rich are carbonaceous chondrites, which have 1235 ppm nitrogen on average (Wasson and Kallemeyn, 1988; Johnson and Goldblatt, 2015). If all nitrogen were released as N$_2$ upon impact, then a hypothetical 3.2×10^{23} kg of carbonaceous chondrites could contribute 1 PAN. Such a mass is about 0.05% of Earth’s mass and is approximately equivalent to the once-proposed total mass of late heavy bombardment material (Wetherill, 1975). Impacts later in the Archean, post-dating the Late Heavy Bombardment, would have been several orders of magnitude smaller than 0.05% of Earth’s mass (Johnson and Melosh, 2012); hence this nitrogen source was most likely trivial for atmospheric evolution.

Impact erosion has been proposed as an explanation for the thin atmosphere of Mars (Melosh and Vickery, 1989), but more recent calculations suggest that this mechanism may have been less effective than previously thought (Manning et al., 2009). The effect would further decrease with more massive planets than Mars; it is not generally considered to have been significant on early Earth. It is thus probably not a major nitrogen sink on most habitable Earth-like planets.

Large-scale crustal heating resulting from impacts could add some nitrogen to the atmosphere (Wordsworth, 2016). Current estimates of nitrogen in continental crust suggest a mass of 1.7×10^{18} kg, or 0.5 PAN (Goldblatt et al., 2009; Johnson and Goldblatt, 2015). During the late Archean, when atmospheric pN$_2$ may have been as low as 0.44 PAN (Section 3.1.2), the continental reservoir may have been as large as 1.7 times the present continental reservoir, though nitrogen concentrations in continental crust rocks through time are poorly constrained (Section S2). The nitrogen contained in oceanic crust and lithosphere is relatively minor (≈0.57 to 6.7×10^{18} kg N) (Johnson and Goldblatt, 2015). To raise atmospheric pN$_2$ by more than 0.1 PAN through crustal melting, more than 5% of the continental crust would have needed to melt in the Neoarchean and more than 20% in the modern. We consider this unlikely, because there is no geological evidence of such large-scale crustal melting events. We note, however, that some rock types, such as lower continental crust and the oceanic lithospheric upper mantle, are poorly characterized. There are suggestions that parts of the mantle may contain substantial nitrogen (Li et al., 2015), and if a significant fraction of the mantle experienced melting, then large quantities of nitrogen could be added to the atmosphere.

3.3.2. Superplumes. Superplume events represent another type of mantle melting that may contribute to changes in atmospheric N$_2$. When typical mantle melts (i.e., MORB) have a very low nitrogen content of ≈ 1 ppm (Marty, 1995; Marty and Zimmermann, 1999; Johnson and Goldblatt, 2015), sparse data from continental basalts show higher concentrations. Basalts from the Abitibi region have 6 ppm nitrogen (Honma, 1996), Columbia River basalt has 34 ppm (BCR-1, Govindaraju, 1994), and recent Antarctic basalts around 60 to 100 ppm (Greenfield, 1991). Assuming that most nitrogen will degas during eruption, these concentrations suggest that substantial nitrogen could have been released during flood basalt eruption events.

Fluid in equilibrium with basaltic melt under oxidizing conditions ($f_{O_2} = \Delta NNO + 3$) has approximately 10^4 times more nitrogen than the melt itself (Li et al., 2015). Assuming all nitrogen contained in the fluid degasses, an eruption of 3×10^{18} kg basalt (equivalent to the Siberian Traps) with ≈ 30 ppm nitrogen remaining in the basalt suggests a release of 1×10^{18} kg nitrogen, or 0.25 PAN. While measurements of nitrogen in flood basalts are quite rare, making this speculative, this simple calculation hints that these events could influence atmospheric N$_2$ content. However, it is important to note that superplumes in oceanic plates would likely have been much less effective, given that marine basalts tend to have more than 1 order of magnitude less nitrogen than continental flood basalts (see above); the latter likely assimilate and liberate nitrogen from continental crust. An exception may be oceanic superplumes that pass through parts of the mantle that are enriched in nitrogen due to a subduction overprint. Lamproites and lamprophyres, which are volcanic rocks resulting from the melting of enriched mantle, are notably nitrogen-rich (tens of parts per million) (Jia et al., 2003), suggesting that such plumes events could potentially liberate large amounts of nitrogen into the atmosphere. Nitrogen could also have been liberated by plumes that sampled the lower mantle, which according to some estimates may be nitrogen-rich (Johnson and Goldblatt, 2015). However, both the nitrogen concentration of the lower mantle and the transport pathways of material from such great depth (>660 km) are highly uncertain, making this mechanism difficult to evaluate. Another complication in predicting the effect of superplumes in deep time comes from the possibility that the redox state of magmas may have increased over time, and under more reducing conditions magmatic nitrogen may have been less volatile (Libourel et al., 2003; Kadik et al., 2011; Roskosz et al., 2013; Mikhail and Sverjensky, 2014).

3.3.3. Planetary resurfacing. If superplume events are extended to a planetary scale, as is suggested to have happened on Venus, even more nitrogen could be released. The area of the Siberian traps, to continue the above example, is 2.5×10^6 km2, or about 1/200th of the surface of Earth. Multiplying the above estimate for nitrogen released during Siberian Trap volcanism by 200 yields a nitrogen output of 2×10^{20} kg, or ~50 PAN. Again, we note that this is a highly speculative estimate, but it does suggest the possibility of substantial additions of nitrogen to the atmosphere via large-scale volcanism on other planetary bodies that contain substantial amounts of nitrogen in the crust. Overall, catastrophic events could have more marked effects on planets.
where the crust is nitrogen-enriched, which, as noted above (Section 3.1.2, 3.2.2), is more likely to be the case on planets with a large biosphere that transfers atmospheric nitrogen to crustal repositories.

4. Discussion

4.1. The evolution of atmospheric \(p_{N_2} \) on Earth

Although many parameters in the global biogeochemical nitrogen cycle are uncertain and potential reconstructions of Earth’s interior are not taken into consideration for lack of quantitative constraints (Mikhail and Sverjensky, 2014), our results allow us to draw several broad conclusions under the assumption of persistent tectonic cycling through Earth’s history, as follows:

1. The results from our base model (Fig. 2a), where nitrogen burial is held constant through time while oxidative weathering follows atmospheric \(p_{O_2} \), show that the oxygenation of the atmosphere alone could probably not have caused the large swings in atmospheric \(p_{N_2} \) that were suggested by Som et al. (2016). Changes in the atmospheric nitrogen reservoir by more than \(\sim 0.1 \) PAN most probably require a change in nitrogen burial over time.

2. Variations in nitrogen burial by up to a factor of 2.9, as inferred from the record of relative organic carbon burial (\(f_{org} \)), are insufficient to cause significant swings of more than \(\sim 0.2 \) PAN in atmospheric \(N_2 \) (Fig. 2b). Even if we use \(f_{org} \) values from the upper end of the uncertainty range (Krisiansen-Totton et al., 2015), the atmospheric \(N_2 \) reservoir does not drop by more than 0.3 PAN. If \(f_{org} \) was smaller than assumed, due to a greater proportion of carbonate formation in oceanic crust or within sediments (Bjerrum and Canfield, 2004; Schrag et al., 2013), this variable would have even less effect on atmospheric \(N_2 \). To reach atmospheric pressures of less than 0.5 bar at 2.7 Ga (Som et al., 2016), while maintaining pressures of 0.5–1.1 bar \(N_2 \) at 3.5 Ga (Marty et al., 2013), nitrogen burial must have been markedly higher in the earlier Archean than it is today. There are three possible scenarios to increase nitrogen burial: (i) subduction was more efficient than it is today, and metamorphic devolatilization was suppressed; (ii) nitrogen was buried preferentially relative to carbon; (iii) the absolute organic carbon burial flux was much higher, and with it the burial of carbonate, such that \(f_{org} \) did not change. It is conceivable that subduction was faster in the Archean (option i), but our sensitivity tests (Section S3) show that shortening the residence time of nitrogen in pelagic sediments by a factor of 2 has minimal effects on the atmospheric reservoir (<0.01 PAN), because the bulk of sedimentary nitrogen is recycled via metamorphism. Metamorphic devolatilization may have been enhanced in the Archean when the geothermal gradient was perhaps somewhat higher than today (Condie and Korenaga, 2010; Cartigny and Marty, 2013), but variations in this parameter also have minimal influence on the output of our model (Section S3). The effects of more rapid subduction and enhanced devolatilization may have more or less canceled each other without a net increase of nitrogen drawdown.

Preferential nitrogen burial (option ii) could potentially occur through adsorption of \(NH_4^+ \) onto clay minerals. Boatman and Murray (1982) experimentally derived a relationship between the amount of \(NH_4^+ \) adsorbed on clay and the dissolved \(NH_4^+ \) concentration in solution. For a doubling of the total nitrogen burial flux, the adsorbed concentration would have to match the concentration of organic nitrogen. Shale samples of sub-greenschist metamorphic grade typically have nitrogen concentrations in the range of 100–1000 ppm with C/N ratios around 40, suggesting that most nitrogen is derived from organics (Stüeken et al., 2016). To achieve this concentration through \(NH_4^+ \) adsorption alone would require a dissolved \(NH_4^+ \) concentration of 3–30 mM, which is 30–300 times higher than the \(NH_4^+ \) concentration of the modern Black Sea (100 \(\mu \)M, Brewer and Murray, 1973) and 100–1000 higher than modern marine \(NO_3^- \) levels (30 \(\mu \)M, Sverdrup et al., 1942). Such high ammonium abundances are also inconsistent with the nitrogen isotope record, which suggests that N-limited ecosystems dominated by biological \(N_2 \) fixation were initiated in the Mesoarchean at 3.2 Ga (Stüeken et al., 2015) and persisted until the GOE at \(\sim 2.35 \) Ga (Stüeken et al., 2016). A large reservoir of dissolved \(NH_4^+ \) should have resulted in isotopic fractionations of up to 27‰ associated with partial \(NH_4^+ \) assimilation into biomass (Hoch et al., 1992; Pennock et al., 1996), which is not observed. Moreover, due to the extreme energetic cost of splitting the N≡N triple bond, nitrogen fixation should have been suppressed rather than expressed where ammonium was readily available as a nutrient. Enhanced nitrogen burial through adsorption is further inconsistent with the record of C/N ratios, because significant addition of adsorbed \(NH_4^+ \) would require consistently lower C/N ratios in the earlier Precambrian, which is opposite to observations; C/N ratios tend to increase with increasing age due to preferential nitrogen loss during low-grade metamorphism (Stüeken et al., 2016). \(NH_4^+ \) adsorption to clays likely did occur during diagenesis, where \(NH_4^+ \) in pore waters can become enriched to several millimolar by degradation of organic matter (e.g., Rosenfeld, 1979; Boudreau and Canfield, 1988), but in that case the adsorbed nitrogen is simply returned to the sediment from which it was derived and does not lead to excess nitrogen burial. Enhanced \(NH_4^+ \) adsorption in the Archean ocean is therefore unlikely to have caused a drawdown in atmospheric \(N_2 \). Instead, we find it more likely that absolute organic carbon burial, and with it organic nitrogen burial, was significantly higher (option iii).

3. Enhanced volcanic \(CO_2 \) outgassing in the earlier Precambrian could explain greater nitrogen burial if accompanied by increased burial of both organic matter and carbonate. The observed constancy of \(f_{org} \) could have been maintained through carbonatization of oceanic crust as a large carbonate sink (Nakamura and Kato, 2004). Organic matter burial was likely concentrated under anoxic waters along continental margins where sedimentation rates were high. Such an enhanced biomass burial flux would have led to an increase in nitrogen burial and can thus explain the observation of low Neoarchean \(p_{N_2} \) (Fig. 2c). Following the formulation of Canfield (2004) for a higher heatflow and proportionally higher volcanic fluxes in deep time, this scenario increases the nitrogen burial flux by 40–80% (depending on the exact age) relative to our early Paleozoic base value, or 3.4–1.9 times above the \(f_{org} \) factor alone, throughout most of the Archean. We note that the assumption of a higher Archean \(CO_2 \) flux (Canfield, 2004; Zahnle et al., 2006) has been challenged by studies arguing for a
gradual increase in CO₂ outgassing from the Archean into the Proterozoic, concurrent with late continental growth (Holland, 2009; Lee et al., 2016). However, if volcanic CO₂ emissions were lower in the Archean than they are today, absolute carbon burial would have been lower and with it the burial of nitrogen. Low Archean CO₂ fluxes would only be compatible with high nitrogen burial if f_{org} had been much higher than generally assumed. A high Archean CO₂ flux thus remains the most plausible mechanism in our model to explain a decline in p_{N_2} from 0.5–1.1 bar at 3.5 Ga to <0.5 bar at 2.7 Ga, as suggested by paleobarometers (Marty et al., 2013; Som et al., 2016). We will therefore proceed with this assumption, noting that the Archean CO₂ flux requires additional constraints to derive a more accurate trajectory for p_{N_2}.

We further note that a higher absolute burial flux of organic carbon would constitute a source of oxygen equivalents that would have needed to be balanced by reductants to maintain anoxic surface conditions in the Archean (Kasting, 2013). Proposed fluxes of possible reductants (H₂, CO, H₂S, Fe²⁺) range over an order of magnitude (reviewed by Zahnle et al., 2006; Holland, 2009) and could therefore plausibly cover the effect of carbon burial. Reductant fluxes may indeed have been higher than previously suggested during the earlier Archean if new evidence for a secular increase in the redox state of Earth’s mantle is taken into account (Nicklas et al., 2015). A 2- to 4-fold higher carbon burial flux does therefore not necessarily violate redox balance models.

If we calibrate our model with the results of Som et al. (2016), who inferred an atmospheric pressure of <0.5 bar from the relative sizes of vesicles in basalt flows, then the lower part of our uncertainty range in Fig. 2c is more likely to be correct than the upper part. In this case, our model predicts the lowest atmospheric pressure in the Neoarchean and two stepwise increases across the Paleoproterozoic and Neoproterozoic oxidation events, when oxidative weathering progressively shortens the residence time of nitrogen in continental sediments and crust. Our prediction of ∼0.6 PAN (0.47 bar N_2) in the Mesoproterozoic is testable with further analyses of vesicle sizes in Proterozoic lava flows. (4) The effect of superplumes is difficult to assess; they could have led to either more rapid nitrogen recycling through crustal melting or slightly enhanced nitrogen drawdown through carbon burial. The balance may further depend on the redox state of magmas, which may have changed over time in favor of progressively more N₂ degassing (Mikhail and Sverjensky, 2014). Overall, reconfigurations of the deep Earth are currently poorly constrained, but these could potentially have significant effects, beyond the scope of our model.

4.2. Climatic effects of atmospheric p_{N_2} changes in the Archean

Significant changes of >0.1 PAN in our modeled atmospheric N₂ abundances occur over several hundred million-year time scales (Fig. 2c, 2d). Although atmospheric pressure affects the greenhouse efficiency of other atmospheric gases like CO₂ through pressure broadening (Goldblatt et al., 2009) and can therefore theoretically cause changes in surface temperature, these time scales are so long that any resulting temperature change could be balanced by the carbonate-silicate feedback cycle, which has a response time on the order of a few hundred thousand years (Sundquist, 1991). As p_{N_2} declines, greenhouse warming decreases, causing the planet to cool. However, with lower temperatures, silicate weathering by carbonic acid slows down, which lowers the sink flux of atmospheric CO₂ from the atmosphere (Walker et al., 1981). CO₂ would thus build up and balance the temperature change caused by the drop in p_{N_2}.

Table 1 shows the required response in p_{CO_2} to our calculated drop in p_{N_2} in the Archean. These calculations also take into account the increasing solar luminosity, which warms the planet and therefore leads to a steady decrease in p_{CO_2}. In sum, the effect of rising solar luminosity outpowers the effect of declining p_{N_2} from 3.5 to 2.7 Ga in our nominal model scenario (Fig. 2c); hence p_{CO_2} would have needed to decrease to maintain a stable surface temperature of 278 K. If p_{CO_2} did not respond, then surface temperature would increase by about 4 degrees over this time interval due to the increase in solar luminosity, despite the drop in p_{N_2}. It is only in cases of extreme nitrogen burial, that is, at the lower limit of our uncertainty interval in the model with an additional superplume (Fig. 2d, excluding potential effects of crustal melting), that the decline in p_{N_2} would cause surface temperature to drop by around 7.5 degrees. This drop could have been counterbalanced by a 3- to 5-fold increase in p_{CO_2}. We note that all our calculated values for p_{CO_2} fall within, or very close to, the range of late Archean CO₂ pressures inferred from the rock record (0.003–0.15 bar at 2.5 Ga and 0.004–0.75 bar around 2.7 Ga, Sheldon, 2006; Driese et al., 2011; Kanzaki and Murakami, 2015). Although these estimates vary widely, this agreement suggests that our model results are not unrealistic. Overall, plausible changes in atmospheric p_{N_2} as inferred from our model are unlikely to have resulted in massive climatic perturbations. [We note that a requirement for globally averaged temperatures approaching modern values (~288 K) or higher throughout the Archean would be hard to reconcile with the most restrictive constraints on p_{CO_2} from paleosols even without the climatic impact of falling p_{N_2}, which is the well-known Faint Young Sun Paradox. For all but our most extreme scenarios, falling p_{N_2} would only negligibly exacerbate this problem.]

4.3. N_2 in extraterrestrial atmospheres

Geological and potential biological processes on other planets may differ markedly from those on Earth, as might the initial volatile inventory. Our results can therefore only provide qualitative trends, but they may nevertheless serve as useful guidelines in evaluating measurements of atmospheric p_{N_2} in exoplanetary atmospheres (Schwieterman et al., 2015b). At the very least, our approach allows us to isolate selected variables that have the potential to play a major role in the evolution of a planet’s nitrogen cycle.

Most importantly, nitrogen burial under completely abiotic and anoxic conditions on an Earth-like planet within the habitable zone is likely to be trivial compared to mantle degassing; hence an uninhabited Earth-like planet with a significant nitrogen inventory is unlikely to ever show low atmospheric N₂ pressures (Fig. 3a). This conclusion may be violated in a few cases, as follows:
(a) On young, very hot (>1000 K), reducing planets, N\textsubscript{2} may be rapidly reduced to NH\textsubscript{3} and dissolved in a magma ocean (Wordsworth, 2016). This scenario could probably be ruled out by inferring the planetary temperature through measurements of infrared emission, examination of the planet’s atmospheric scale height to determine H\textsubscript{2} abundance, and/or observations of the host star to provide an estimate of the planet’s age.

(b) Atmospheric pN\textsubscript{2} may be permanently low on planets that have lost their atmosphere by erosion and where the outgassing rate is at least an order of magnitude lower so that the atmosphere cannot be replaced (e.g., modern Mars). In this case, however, the abundance of other atmospheric gases would also be very low, and the planet’s propensity to lose its atmosphere could be inferred from direct or indirect measurements of its mass and radius and therefore its surface gravity.

(c) Nitrogen burial could be more effective if abiotic N\textsubscript{2} fixation by volcanism, lightning, or impacts (Kasting and Walker, 1981; Kasting, 1990; Navarro-González et al., 1998; Mather et al., 2004) is at least an order of magnitude higher than estimated for early Earth. If the pH of the ocean on such a planet is significantly higher than 5, then even larger fixation rates would be required, because otherwise fixed NH\textsubscript{4}+ (produced after conversion of NO\textsubscript{3}- to NH\textsubscript{4}+ via hydrothermal reduction) (Brandes et al., 1998) would be returned to the atmosphere as NH\textsubscript{3} gas instead of adsorbing onto mineral surfaces (Stüeken, 2016). NH\textsubscript{3} gas quickly dissociates back to N\textsubscript{2} under UV light (Kuhn and Atreya, 1979). So far, a theoretical basis for unusually high extraterrestrial lightning rates is lacking. Enhanced volcanic activity may be detectable remotely through time-dependent observations of sulfate aerosols through transmission spectroscopy (Misra et al., 2015).

(d) Planets may have had a large compositional deficit of nitrogen after the initial period of accretion and enhanced atmospheric erosion by stellar UV light (Lichtenegger et al., 2010; Wordsworth and Pierrehumbert, 2014). This scenario may be detectable through the abundance of other volatiles in the planet’s atmosphere or measurements of the nitrogen abundance in the host star (e.g., Brewer et al., 2016).

(e) Planets with a markedly lower oxygen fugacity in their mantle compared to that of Earth may not degas N\textsubscript{2}, because mantle nitrogen may be stable as NH\textsubscript{3} and thus less volatile (Mikhail and Sverjensky, 2014; Li et al., 2015). But such planets may be discernable by the presence of CO rather than CO\textsubscript{2} in their atmospheres.

For planets that do not fall within the habitable zone, and thus are not covered by our model results, other scenarios could apply. For example, planets that are closer to the host star than the habitable zone that lack a surface ocean, such as Venus, would show insignificant nitrogen burial; hence atmospheric N\textsubscript{2} would increase as the mantle degasses. This effect would be enhanced on planets with a high oxygen fugacity where N\textsubscript{2} outgassing is favored over NH\textsubscript{3} retention, as proposed for early Venus (Wordsworth, 2016). Planets far beyond the habitable zone may have low atmospheric pN\textsubscript{2} if temperatures drop low enough for N\textsubscript{2} to become liquid or solid, such as on modern Pluto and possibly ancient Titan (McKay et al., 1993; Lorenz et al., 1997). Hence, pN\textsubscript{2} can fluctuate abiotically in such extreme cases, but for Earth-like planets within the habitable zone as considered in our model, abiotic N\textsubscript{2} drawdown is much less likely.

A biosphere on a completely anoxic Earth-like planet can potentially have substantial effects on atmospheric N\textsubscript{2} (Fig. 3b). A nitrogen burial flux equivalent to a few percent of modern biological N\textsubscript{2} fixation rates (without oxidative remineralization) may be sufficient to deplete the atmosphere of N\textsubscript{2} if mantle outgassing rates are comparable to those of Earth. In the absence of oxidative weathering, the only steady return fluxes of buried nitrogen back to the atmosphere would be metamorphism, volcanism, and mantle outgassing, and possibly catastrophic events (Section 3.3.2). It is important to note, however, that burial rates may be significantly different on planets that lack a surface reservoir equivalent to continental crust on Earth (Fig. 3d), which is able to take up and release atmospheric N\textsubscript{2} on hundred-million-year timescales.

Overall, our results strengthen the conclusion that the simultaneous presence of significant amounts of both N\textsubscript{2} and O\textsubscript{2} may be a biosignature and indicative of a biosphere with oxygenic photosynthesis (Schwieterman et al., 2015b; Krissansen-Totton et al., 2016) (Fig. 4). As shown above, a large anaerobic biosphere that never “invents” oxygenic photosynthesis can draw down N\textsubscript{2} to relatively low levels. Hence, both O\textsubscript{2} and N\textsubscript{2} would be low. Atmospheric erosion and the possibility of an unusually low mantle fugacity can be evaluated independently in such a scenario (e.g., Mars). On a completely abiotic planet orbiting in the habitable zone of a Sun-like star, O\textsubscript{2} can build up abiotically, but probably only under the condition that non-condensible gases (including N\textsubscript{2}) are present in low amounts (Wordsworth and Pierrehumbert, 2014). According to this model, water from a surface ocean would be able to enter the upper atmosphere, where it would be photolyzed by UV, causing the H to escape and O to build up after surface sinks for oxidants are depleted. In this case, N\textsubscript{2} must start and remain low; otherwise the process is halted. Hence, high levels of abiotic O\textsubscript{2} would not coexist with a thick N\textsubscript{2} atmosphere. (Though note the likelihood that abiotic O\textsubscript{2} may be substantially higher for

\[p\textsubscript{N2} \]

\[p\textsubscript{O2} \]

\[\text{low} \]

\[\text{high} \]

\[\text{uninhabited (Venus) or a small anaerobic biosphere (possibly Hadean Earth)} \]

\[\text{possibly a (large) anaerobic biosphere (Archean Earth, if atmospheric loss can be ruled out (cf. Mars)} \]

\[\text{probably no life} \]

\[\text{suggests an aerobic biosphere (e.g. modern Earth)} \]

FIG. 4. Plausible interpretations of observed N\textsubscript{2} and O\textsubscript{2} abundances in exoplanetary atmospheres. Quantitative constraints on cutoffs for “low” and “high” abundances would need to be evaluated based on measurements of other gases and comparisons to other planets in the observed system.
planets orbiting M dwarf stars due to other mechanisms not applicable to solar-type host stars (e.g., Harman et al., 2015; Luger and Barnes, 2015]. A high-O2-low-N2 scenario is difficult to create biologically given the strong tendency of oxidative weathering and increasing oxygen fugacity in the mantle to release N2 to the atmosphere. An inhabited planet whose biosphere invents oxygenic photosynthesis could eventually transition to oxidative weathering, thereby initiating rapid recycling of buried nitrogen from continental crust as on early Earth (e.g., Fig. 2c). This is thus perhaps the only case where both N2 and O2 reach high relative abundances in the atmosphere. In summary, (1) a planet with high pN2 and no O2 probably has either no biosphere (e.g., Venus) or a very small and/or young biosphere (e.g., first life on the Hadean Earth) that is incapable of transferring large quantities of nitrogen to the crust; (2) a planet with O2 but no N2 may be uninhabited; (3) a planet with neither O2 nor high (modern) abundances of N2 may host an anaerobic biosphere as exemplified by Archean Earth, provided that atmospheric erosion can be ruled out (cf. Mars); and (4) a planet with both significant N2 and O2 suggests the presence of a biosphere powered at least in part by oxygenic photosynthesis as on modern Earth. Low total N2 on an anoxic planet (case 3) may be a weak biosignature, which could be confirmed through the detection of other biosignature gases or surface features (e.g., Des Marais et al., 2002; Pilcher, 2003; Domagal-Goldman et al., 2011; Schwieterman et al., 2015a).

5. Conclusion

The wide range of uncertainties in all our models, in particular about anything related to possible reconfigurations of Earth’s mantle (Mikhail and Sverjensky, 2014), prohibits firm conclusions. Nevertheless, our results allow us to isolate a few key parameters for the evolution of a planet’s nitrogen cycle and to formulate hypotheses about the evolution of atmospheric N2 reservoirs on Earth and other planets. Some of these hypotheses may be testable with more constraints on nitrogen fluxes and with additional measurements of geological proxies for atmospheric pressure (Som et al., 2012; Marty et al., 2013; Glotzbach and Brandes, 2014; Kite et al., 2014; Som et al., 2016) (see Kavanagh and Goldblatt, 2015, for possible complications).

To first order, our results suggest that the greatest variability in atmospheric pN2 over the history of a planet can be achieved if the planet is inhabited, if biomass burial is highly variable, and/or if it experiences oxygenation events or large-scale crustal melting. Other abiogenic scenarios could be envisioned that could potentially lead to pN2 fluctuations, such as N2 freeze-out or atmospheric loss, but many of these cases would likely be discernable through other observations, in particular the orbit of the planet and the abundances of other gases. On an inhabited planet, variation in biomass burial can result from changes in the supply of metabolic substrates, including CO2 (as on Earth, Fig. 2c, 2d) and N2 (as in potential exoplanets, Fig. 3b). In the case of Earth, enhanced biomass burial in the Archean, followed by a stepwise shortening of the crustal residence time across the Paleo- and Neoproterozoic increases in oxidative weathering, could explain the drawdown and recovery of atmospheric N2 inferred from abundances of N2 in fluid inclusions at 3.5 Ga (Marty et al., 2013) and the size distribution of basaltic amygdales at 2.7 Ga (Som et al., 2016). We note that there is no independent evidence of enhanced burial of both organic carbon and carbonate in the Archean, because total organic carbon (TOC) and carbonate contents of Archean sedimentary rocks are not known to be particularly high. This discrepancy may suggest that large amounts of carbon-rich sediments and carbonated basalts have been subducted and lost. If one were to reject our hypothesis of enhanced nitrogen drawdown into continental crust as a temporary reservoir, then another alternative possibility for explaining a low Neoarchean N2 pressure (Som et al., 2016) would be a much lower initial pN2 value in the early Archean, followed by a marked increase in mantle degassing at some time between the Neoarchean and the modern. A test with our “Forg” model suggests that such a trajectory could be achieved if the mantle degassing rate were an order of magnitude higher throughout Earth’s history than thought (Busigny et al., 2011). However, this scenario would be inconsistent with proposed N2 pressures of 0.5–1.1 bar at 3.5 Ga (Marty et al., 2013). There is also no evidence for a major transition in the style or rate of mantle outgassing. But if such a transition occurred, it could conceivably be related to proposed changes in the mantle’s redox state (Mikhail and Sverjensky, 2014; Nicklas et al., 2015; Aubuchon and Stagno, 2016). Further research is needed to evaluate this possibility.

Lastly, our results may have some practical implications for observations of extrasolar planets. Despite all the uncertainties in our models, our results suggest that an anaerobic biosphere can—under Earth-like geological conditions—remove significant amounts of N2 from the atmosphere. If multiple terrestrial planets around another star started out with similar volatile contents, but one of them has a significantly lower atmospheric N2 abundance, then this may potentially serve as a biosignature. Measurements of other gases may be necessary to rule out atmospheric erosion as on Mars. In contrast, a planet with an oxygenic biosphere that stimulates oxidative weathering could maintain an atmosphere rich in both N2 and O2, similar to post-Archean Earth. Our results thus support the idea that the combination of N2 and O2 in an exoplanetary atmosphere may be a signature of a biosphere that is capable of oxygenic photosynthesis (Wordsworth and Pierrehumbert, 2014; Schwieterman et al., 2015b; Krissansen-Totton et al., 2016).

Acknowledgments

We thank the NASA postdoctoral program (E.E.S., E.W.S.), the NSF Graduate Research Fellowship program (M.A.K.), the NSF FESD program (grant number 1338810, subcontract to R.B.), the NSERC Discovery program (B.J.), the NASA Exobiology program (grant NNX16AI37G to R.B.) and the NAI Virtual Planetary Laboratory at the University of Washington (solicitation NNH12ZDA002C and Cooperative Agreement Number NNA13AA93A; E.W.S., R.B.) for financial support. We thank Jim Kasting and two anonymous referees for numerous helpful comments that improved the manuscript.

Author Disclosure Statement

No competing financial interests exist.
References

Address correspondence to:
E.E. Stüeken
Department of Earth and Space Sciences
University of Washington
Seattle, WA 98195
E-mail: evast@uw.edu

Submitted 16 May 2016
Accepted 17 August 2016

Abbreviations Used

GOE = Great Oxidation Event

NOE = Neoproterozoic Oxidation Event

PAN = present atmospheric nitrogen

TOC = total organic carbon